EE 230 Lecture 12

Basic Applications of Operational Amplifiers

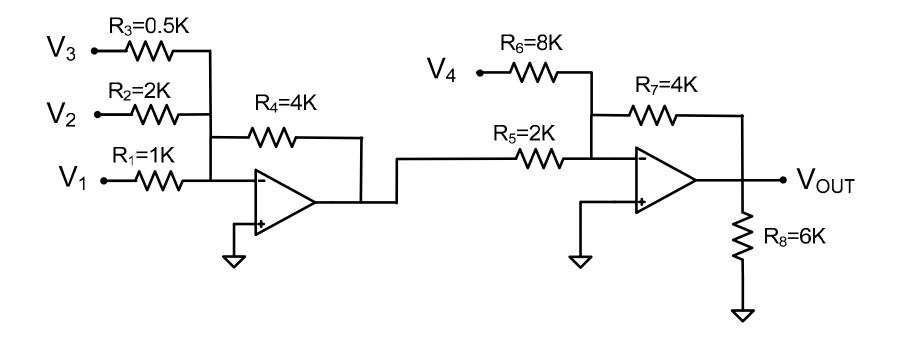
Generalized Impedances

Integrators

Analog Computation

Quiz 9

Determine the output voltage for the following circuit. Assume the op amps are ideal.



And the number is?

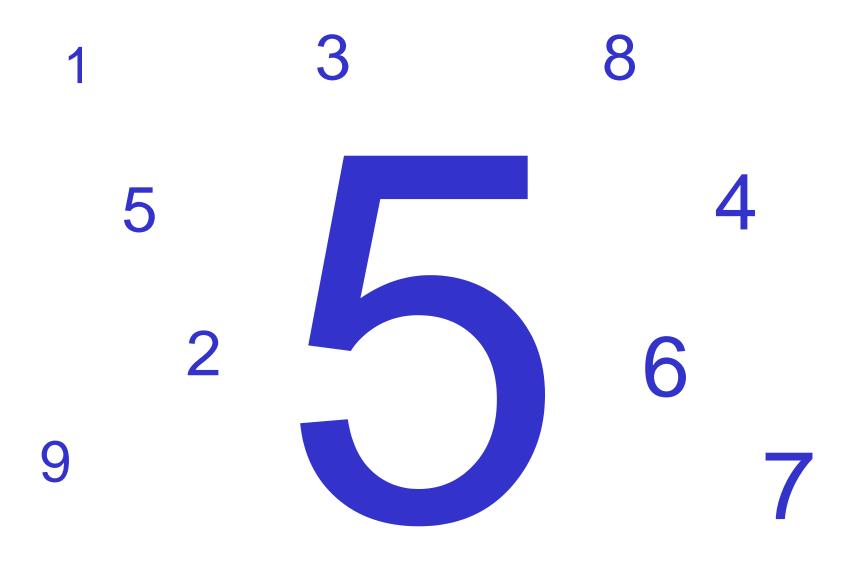
1 3 8

5

2

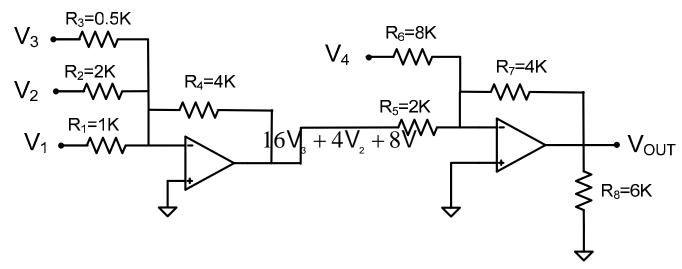
9

And the number is?



Quiz 9 Solution:

Determine the output voltage for the following circuit. Assume the op amps are ideal.



By superposition

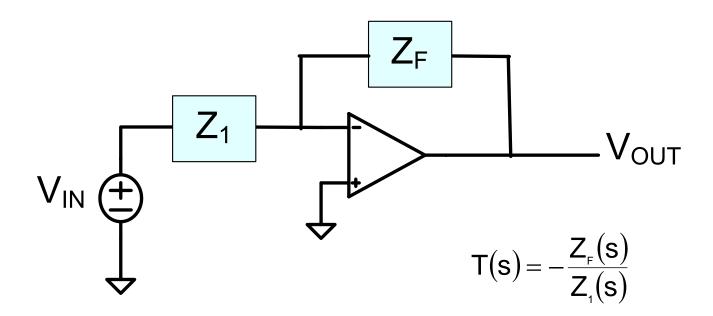
$$V_{\text{OUT}} = -\frac{R_{7}}{R_{6}} V_{4} - \frac{R_{7}}{R_{5}} \left(-\frac{R_{4}}{R_{3}} V_{3} - \frac{R_{4}}{R_{2}} V_{2} - \frac{R_{4}}{R_{1}} V_{1} \right)$$

$$V_{\text{OUT}} = -0.5V_{4} + 16V_{3} + 4V_{2} + 8V_{1}$$

Review from Last Time

Summing Amplifiers with mixed weights on inverting and noninverting inputs can be readily obtained

Integration and Differentiation functions can be obtained from the basic generalized feedback amplifier structure



Integration and Differentiation

Integration

$$y(t) = K \int_{\tau=0}^{t} x(\tau) d\tau$$

$$\mathcal{L}(y(t)) = \frac{K}{s} \mathcal{L}(x(t))$$

$$Y(s) = \frac{K}{s}X(s)$$

Integration and Differentiation

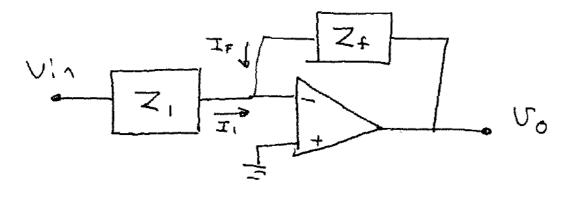
Differentiation

$$y(t) = K \frac{dx(t)}{dt}$$

$$\mathcal{L}(y(t)) = Ks\mathcal{L}(x(t)) - x(0)$$

$$Y(s) = KsX(s) - x(0)$$

Generalized Inverting Amplisier



S-domain impedances

$$J_{i} = \frac{V_{i}}{Z_{i}}$$

$$J_{F} = \frac{V_{o}}{Z_{f}}$$

$$J_{i} = -J_{F}$$

$$\frac{V_o}{V_i} = -\frac{Z_f}{Z_i}$$

what if
$$Z_f = \frac{1}{SC}$$
, $Z_i = R$
 V_i
 V_i

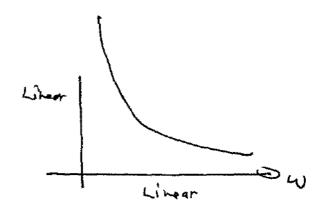
What is this?

$$T(s) = \frac{1}{Rrs}$$

$$T(j\omega) = \frac{1}{j \omega Rc}$$

$$|T(j\omega)| = \frac{1}{\omega Rc}$$

Integrator Gain



$$\frac{V_0}{V_i} = -\frac{Z_f}{Z_i}$$

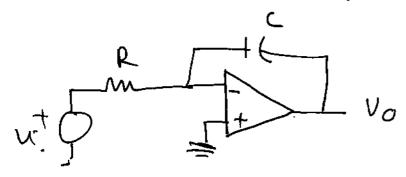
Let
$$Z_1 = \frac{1}{5c}$$

$$Z_F = R$$

Differentiation (Inverting)

- Not wikely used
- Noise relentles la amplified
- _ stability problems with imploreletion

Inverting Intogrator



$$\frac{V_0}{V_1} = -\frac{1}{RCS}$$

Inverting because gain is negative

- · Seldom used in open-loop application
 - . widely used in feedback application

If $X_i(t)$ has any de component F(s) = 1/c

$$X_{o}(t) = \int_{0}^{\infty} X_{i}(t) = \int_{0}^{\infty} \left(A_{o} + A_{i} \sin(\omega t t \theta_{i}) + - - - \right)$$

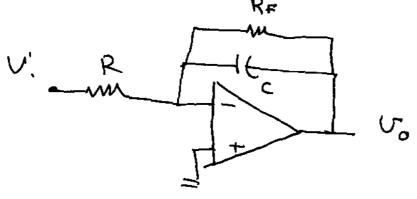
$$= \int_{0}^{\infty} A_{0} dt + A_{1} \int_{0}^{\infty} \sin(\omega t + \omega_{1}) + A_{2} \int_{0}^{\infty} \sin(\omega t + \omega_{1}) + ...$$

lim A.(t)

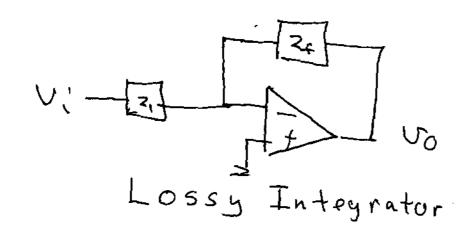
diverge to 00

· Integrator function is ill-conditioned for open loop applications

Method for approx. open loop integration



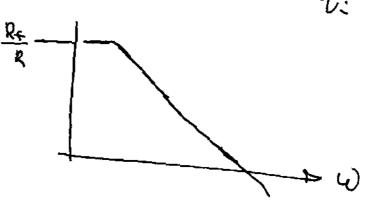
• RE very large
$$V_0 \simeq -\frac{1}{Rc} \int_0^t V_i(t) dt + V_i(0)$$



$$R_{F}$$
 $\frac{1}{SC}$
 $\frac{1}{SC}$

$$Z_{f} = \frac{(R_{f})^{1/s}c}{R_{f} + 1/sc} = \frac{R_{f}}{1 + R_{f}CS}$$

$$\frac{V_0}{V_i} = -\frac{Z_F}{Z_i} = -\frac{R_F}{(1+R_FCS)}R$$

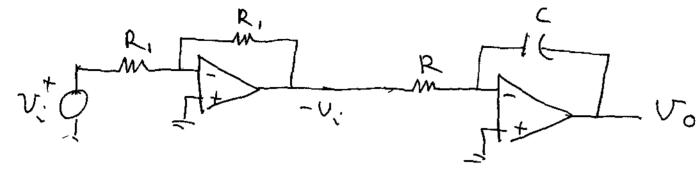


Noninverting Integrator.

Temptation
$$R_{r}$$
 $V_{0} = -\frac{R_{r}}{R}$
 $V_{0} = -\frac{1}{RCS}$
 $V_{0} = V_{0} \left(\frac{R}{R+1/5C}\right)$
 $V_{1} = V_{0} \left(\frac{R}{R+1/5C}\right)$
 $V_{2} = V_{0} \left(\frac{R}{R+1/5C}\right)$

This is not an anoninverting integrator

Noninverting Integrator



Vo = I V.

- follow inverting integrator with inverter instead
 - . Most popular noninventing integrator Structurp

Noninverting Intogrator

$$V_{x} = \frac{\frac{1}{Sc_{1}}}{R_{1} + \frac{1}{Sc_{1}}} \quad V_{x} = \frac{1}{1 + R_{1}C_{1}S}$$

$$V_{x} = \frac{R}{R + \frac{1}{Sc}} \quad V_{0} = \frac{RCS}{1 + RCS} \quad V_{0}$$

$$\frac{V_{0}}{V_{1}} = \left(\frac{1}{1 + R_{1}C_{1}S}\right) \left(\frac{1 + RCS}{RCS}\right)$$

$$If R_{1}C_{1} = RC \quad \left(\frac{Pole}{zero cancellation}\right)$$

$$V_{0} = \frac{1}{R_{1}C_{1}} \quad \left(\frac{Pole}{zero cancellation}\right)$$

Advantage: eliminated one opamp

Disaduantage: - two capacitors

- precise relationships between Rici = RC

Summing Inverting Integrator.

$$\frac{V_1}{V_2} = -\frac{1}{R_1 CS} = -\frac{1}{R_2 CS}$$

Applications to solving differential equations

Example:

$$V_{0} = K_{1} \int V_{0} + K_{2} \int V_{0} + K_{3} V_{1}$$

$$V_{0}' = K_{1} V_{0} + K_{2} \int V_{0} + K_{3} V_{1}'$$

$$V_{0}'' = K_{1} V_{0}' + K_{2} V_{0} + K_{3} V_{1}''$$

$$V_{0} = \alpha_{1} V_{0}' + \alpha_{2} V_{0}'' + \alpha_{3} V_{1}''$$

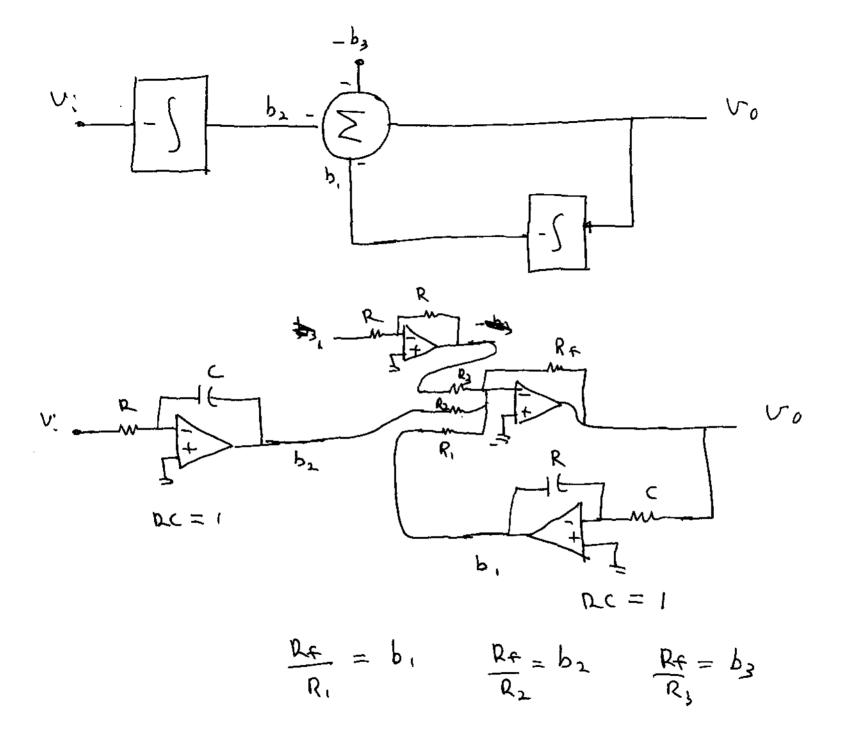
$$V_{0} = \alpha_{1} V_{0}' + \alpha_{2} V_{0}'' + \alpha_{3} V_{1}''$$

standard integral form

standard differential form

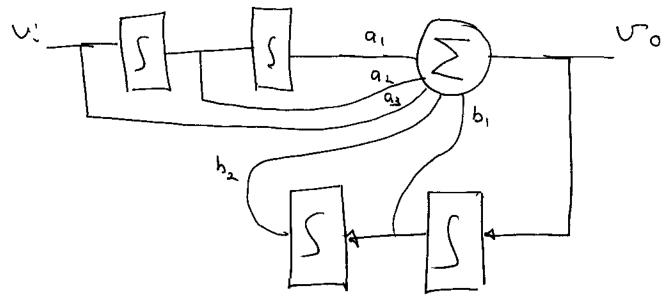
$$V_0 = b_1 \int V_0 + b_2 \int V_1 + b_3$$

$$V_1 = \int \int V_1 + \int V_2 + \int V_3 + \int V_4 + \int V_4 + \int V_5 + \int V_6 +$$



- Straightforward to solve an arbitrary differential equation with inverting integrators, summing amplifiers and inventors
- equations

End of lecture



$$V_0 = \frac{a_1 V_1}{5} + \frac{a_2 V_1}{5^2} + \frac{a_3 V_1}{5} + \frac{b_1 V_0}{5} + \frac{b_2 V_0}{5^2}$$

$$\frac{V_0}{V_i} = \frac{a_3 s^2 + a_2 s + a_1}{s^2 - b_1 s - b_2}$$

any coeff can be positive or negative

Arbitrary transfer function synthesis is easy to achieve.

$$U_0 = \frac{1}{b_1} U_0^{11} - \frac{b_1}{b_2} U_0^{1} - \frac{a_1}{b_2} U_1^{1} - \frac{a_2}{b_2} U_1^{1} - \frac{a_3}{b_2} U_1^{1}$$

standard difficulties for